

Copyright ! REMICS Consortium 2010-2013

REuse and Migration of legacy applications to Interoperable Cloud
Services
REMICS

Small or Medium-scale Focused Research Project (STREP)
Project No. 257793

Deliverable D3.5

REMICS Recover Principles and Methods

Work Package 3

Leading partner: Netfective Technology

Author(s): Franck Barbier, Alexis Henry, Kamil Rybiński, Sławomir Blatkiewicz & Michał Śmiałek

Dissemination level: PU

Delivery Date: August 31 st, 2013

Final Version: 1.0

Public

Copyright ! REMICS Consortium 2010-2013 Page 2 / 27

Versioning and contribu tion history

Version Description Contributors

0.1 Initial version Franck Barbier & Alexis Henry

0.2 WUT input WUT

0.3 Reviewers comments Brice (SINTEF) & Antonin
(Softeam)

1.0 Final version Franck Barbier

Public

Copyright ! REMICS Consortium 2010-2013 Page 3 / 27

Executive Summary
This document describes the overall REMICS Recover technology developed in WP3. This technology
is divided into two independent parts. The first relates to the recovery of old ill-structured applications
and information systems (namely, COBOL-based applications and systems) while the second is
concerned with the recovery of “application logic” from user interfaces extracted in XML format from an
external tool. The first technology component is implemented in the BLU AGE® industrial tool
(www.bluage.com) while the second component is implemented in the ReDSeeDS (www.redseeds.eu)
academic environment.
The goal of the REMICS Recover technology (first component) is to describe, manage and execute
semantic model transformations in order to retrieve the business logic (functionalities, rules…) from
the legacy system in such a way that (a) the retrieved logic is independent of the legacy technology (in
the form of “models” as promoted by MDD) and that (b) it can be automatically transformed into the
new code base and new database that can seamlessly be integrated in the new architecture and are
no longer suffering from the technical debt of the legacy system.
Furthermore, this technology focuses on, as much as possible, automating 100% of the modernization
process (seamless link to WP4 technology on Migration) while allowing users to refine and add
existing software artifacts and associated transformation rules. These actions in essence meet
standards, namely ASTM, KDM, UML and EMF (Eclipse Modeling Framework), and therefore rely on
openness. Indeed legacy applications are not homogeneous and many different programming
languages, database technologies, design patterns and coding practices impose the creation of a
whole neutral view of the legacy system. This occurs through UML models in the case of REMICS.
UML plays the role of a pivot, highly standardized and widespread, language to feed the WP4
process, which is relative to Migration.
The goal of the REMICS Recover technology (second component) is to recover the application logic
from the legacy system that includes user-system interaction sequences and the data exchanged
between the user and the system. This process is automated by collecting (recording) the user-system
interactions played-out by the users of the legacy system, and then automatically transforming these
recordings into human readable scenarios. These scenarios are subject to manual merging into larger
constructs – use cases. The produced requirements-level models are suitable for further automatic
transformation into new technology models and code (see deliverables D4.4, D4.5). It can be noted
that this second component of the recovery technology is capable of recovering systems without
examining their internal structure and code details. It is based solely on determining the observable
behavior of the legacy systems. For this reason it can be used for systems where other technologies
(cf. the first component) fail.

Technical implementation details are out of the scope of this document. See D3.x (x = 1 to 4) for
further details.

Public

Copyright ! REMICS Consortium 2010-2013 Page 4 / 27

Table of contents
EXECUTIVE SUMMARY.. 3	
TABLE OF CONTENTS... 4	
INTRODUCTION.. 5	

1.1	 INTENDED AUDIENCE.. 5	
1.2	 REQUIREMENTS TRACEABILITY ..5	
1.3	 PROBLEM STATEMENT..5	
1.4	 BENEFITS FROM A MDD APPROACH...6	

2	 REMICS RECOVER TECHNOLOGY (1ST COMPONENT)... 6	
2.1	 TECHNOLOGY OVERVIEW...6	
2.2	 TECHNOLOGY INNOVATION..9	
2.3	 REMICS RECOVER TECHNOLOGY (1ST COMPONENT) PRINCIPLES AND METHODS.....................................11	

3	 HANDS-ON MODERNIZATION ENGINEERING ... 11	
3.1	 CONCEPT DEFINITIONS..12	
3.2	 TRANSFORMATION DEFINITIONS...12	
3.3	 ANNOTATION DEFINITIONS...14	
3.4	 ENGINEERING VIEWS AND TRANSFORMATION WIZARDS...15	
3.5	 USE OF ANNOTATIONS (SEMANTIC TAGS) ... 17	
3.6	 PATTERN DETECTION..17	

4	 REMICS RECOVER TECHNOLOGY (2ND COMPONENT) .. 19	
4.1	 INTRODUCTION...19	
4.2	 RECOVERY PROCESS... 20	
4.3	 RECOVERY TECHNIQUES...20	

5	 CONCLUSION .. 24	
6	 BIBLIOGRAPHY.. 25	
7	 GLOSSARY ... 25	

Public

Copyright ! REMICS Consortium 2010-2013 Page 5 / 27

Introduction
This deliverable (D3.5) is a comprehensive description of the REMICS Recover technology. To this
goal, a glossary of key terms and expressions is provided at the end of this document (section
7). The first component of this technology is described in section 2 while the second is described in
section 0.

1.1 Intended audience
Software engineers interested in the REMICS Recover technology as a whole.

1.2 Requirements traceability
The original WP3 objectives are:

a) To define an integrated method for knowledge discovery to extract business value information
from legacy including business models, components, implementation details and test
specifications;

b) To specify the KDM extension to support the method;

c) To develop tools that supports the REMICS Recover process;

d) To capture and preserve application logic when recovering and transform it into processable
models.

After 3 years of research, REMICS D3.5 fulfills the requirements as follows:

a) The full REMICS Recover technology is described in this D3.5 deliverable with
comprehensive principles, methods and illustrations.

b) EKDM is described in D3.x (x = 1 to 4)

c) D3.5 describes the REMICS Recover process from an end user perspective only.
Technical implementation details on meta-models, model transformations and so on are
available in D3.x (x = 1 to 4).

d) ReDSeeDS environment extension with TALE: principles and methods are in D3.5 while
technical implementation is in D3.4.

1.3 Problem statement
The REMICS Recover technology aims at providing solution elements to the following software
modernization problems:

¥ In today’s products, modernization from legacy technology to new technology is not fully
automated, therefore requiring significant manual intervention. Manual work is error-prone due
to the size of large legacy software that cannot be fully managed by a human mind
(complexity, volume of data, algorithms and information in general).

¥ Transforming software based on programming languages (COBOL, three and fourth-
generation languages) prior to the object-oriented paradigm stumbles over the more or less
“exotic structuring” of aging programs. Moving to object-orientation, Service-Oriented
Architecture (SOA) principles requires appropriate modernization concepts, techniques and
tools. In fact, existing approaches do not significantly remove technical debt, as they tend to
translate COBOL into Java without leveraging the “best” object-oriented principles.

¥ Software modernization is similar to decompiling and recompiling programs. So, it is highly
complex or even impossible for users of modernization systems (methods, tools…), to
customize (hidden) transformations. As a consequence, it is very difficult to modernize all the
legacy code because of ambiguities in code semantics and numerous exceptions to design
patterns mostly. The absence of design patterns is primarily due to the lack or absence of
code structuring.

Public

Copyright ! REMICS Consortium 2010-2013 Page 6 / 27

¥ Modernization systems mostly use a kind of internal (often proprietary) pivot representation
formalism to carry out transformations. Legacy code base is transformed through the use of
parsers relying on this pivot formalism. However this pivot is seldom based on worldwide
standards. Therefore, even if users of modernization systems may create tailored
transformations to manage semantic ambiguities, it may be risky to invest in specific
modernization approaches. Data and code volume, business criticality of applications,
sustainable investment and so on, thus impose open standardized means.

1.4 Benefits from a MDD approach
The REMICS Recover technology is based on MDD. More precisely, it intensively reuses industry
standard meta-models, namely KDM, ASTM and UML meta-models. KDM, ASTM and UML are open
standards managed by the OMG. They are well documented and used by many organizations
worldwide. “Models”, MDD and those standards are essential because:

¥ They enable software engineers to extract a platform-independent model out of the existing
code base, thus allowing semantic transformations that get rid of legacy technical influence
and constraints, while making all business and application logic emergent and perennial,

¥ They apply to any legacy architecture and any object-oriented target architecture including
newest SOA and cloud computing platforms,

¥ They allow a more or less 100% automated process to modernize all legacy application
artifacts (embodying application behavior) from the legacy code base toward the new
architecture,

¥ They can be used jointly as a true pivot architecture (both code and data) description
language from application overall structure down to code statements and tokens. This allows
us to factorize transformations from ASTM/KDM to UML (design models with full details),
whatever the target and legacy architecture,

¥ They allow a 100% transformation from UML models to a new code base, therefore ensuring
design equals to implementation,

¥ They enable to make the target architecture vary so that this architecture matches to
organization requirements without the need for a specific runtime (often proprietary)
framework,

¥ They allow any change (e.g., functional requirements’ extension) at UML design level and thus
sharing business knowledge in a fully open, neutral and friendly way.

2 REMICS Recover technology (1 st component)

2.1 Technology o verview
The REMICS Recover technology is in charge of modernizing the legacy application –both code base
and data storage base– toward a new implementation compliant with expected technical
specifications, namely the targeted architecture technology and design patterns (e.g., SOA), coding
styles, code quality and so on.
This goal is achieved through key principles:

¥ Performing functional modernization not “technical migration” (i.e., this is not thoughtless
transcription):

o Transformations analyze the semantics of the existing code base in order to extract
models, which are:

 Platform-independent: the very final extracted UML models are independent
of, both the legacy technology and target technology (technology-
agnosticism). This enables to remove the influence of the legacy technology
and to foster malleability that is necessary to cope with target architecture
constraints and specifications.

 Fully detailed functional specifications containing all the semantics of both the
logic and the behavior of the legacy software. “Technical only” code is not
modernized (for instance, for a transaction, only the definition of the content of

Public

Copyright ! REMICS Consortium 2010-2013 Page 7 / 27

the transaction and the target receiving that content is retrieved versus all the
algorithm in charge of manipulating, converting and preparing data to fit with
the platform specificities). Retrieved semantics (full application understanding)
is “What is done” versus “How it is done”. Indeed, nowadays, design and
coding principles have significantly changed due to the difference in
programming languages capabilities and level of abstraction (libraries for data
and time, transaction management, programming language running on virtual
machines, object paradigm versus “structured” paradigm, frameworks such as
Java Persistence API). As a consequence, the volume of artifacts to be
modernized is significantly reduced, refactoring is simplified and contextual
ambiguities can be better resolved.

¥ Example 1: Ambiguity in existing code:
o Imagine a C function that manipulates an array of bits

(Boolean value, 0 or 1) to shift all elements onto the left. This
can be used either to:

 Manage a decision queue, each bit in the array
represents an element to be processed, the leftmost
bit indicate whether or not trigger an action (0: do not
process, 1 process), then all elements are shift to the
left and the new leftmost bit is analyzed.

 Multiply by two: when multiplying by two the machine
is shifting all bits in the array to the left. C
programming language has access to memory
directly and can perform a multiplication by two this
way (rather that by doing “var = var * 2;”).

¥ Example 2: Code not to be modernized
o JCL (Job Control Language) is used for COBOL application

to organize batch programs. They are files made of hundreds
of lines of code, sometimes thousands. However most
information in JCL are in charge of:

 Managing execution time and compute associated
cost,

 Sorting and merging input and output files,
 Estimating the number of pages for a report

generated by a batch,
 Managing spaces consumed by datasets…

o If the new architecture replaces a file-based repository with a
relational database, usually, the only information to retrieve
from the JCL is the merged information in order to add JOIN
statements when accessing data in the new architecture.
Transforming the existing JCL in equivalent Java code would
be useless, would increase budget and would go against
modern design principles.

¥ Example 3: Ambiguity in exiting code: the legacy code below is a
CICS (Customer Information Control System) transaction to push
some data into a queue. Typically any of the following is potentially
true:

o Option 1: data is sent to another program so that these data
are used remotely for computing other data,

Public

Copyright ! REMICS Consortium 2010-2013 Page 8 / 27

o Option 2: data are shared by multiple programs so that all
share the same information,

o Option 3: data are sent to a database to be persisted.
¥ Ambiguity can only be solved in analyzing consumers of the CICS

queue. Therefore, it is possible to retrieve both the architecture layer
of the reader of the queue and the type of processing involved. With
that information, it becomes possible to identify which of the different
options is correct for the context of analysis.

Legacy code EXEC CICS WRITEQ TS QUEUE (WS-TS-NOM)
 FROM (WS-TS-DATA)
 LENGTH (WS-TS-LENGTH)
END-EXEC.

Java potential equivalent #1 Service call with parameters
Java potential equivalent #2 Assigning value to a singleton (see Glossary) or data is sent using

an event broadcasting mechanism like Java Message Service
(JMS)

Java potential equivalent #3 Synchronizing elements (e.g., data access objects) in memory with
databases when elements’ states change (Java Persistence API
technology)

¥ Fully automated migration is the goal: no manual coding of target code base and,

straightforward consistent database migration, are expected. For that, The REMICS Recover
tech. is organized as follows:

o All legacy application artifacts are modernized automatically; there is no need for
manual coding of any component of the modernized software.

o When facing legacy artifacts that require specific transformations, the REMICS
modernization system (typically, in BLU AGE®) provides “views” and “wizards” to
analyze recovered models and applies transformation rules based on human decision
or design pattern matching (see section 3.6).

o Model extraction is split into two different stages in order to allow users of the
“modernization system” to control and adapt (if desired) transformation rules:

 EKDM models (KDM/ASTM models), associated views and wizards as well
enable visualizing the architecture and detailed structure (data and control
flows) of the application to be modernized. EKDM models can be impacted
when adding new transformation rules, enriching EKDM elements with user-
defined information, enriching automatically EKDM elements with pattern
matching rules.

 UML models which are produced from EKDM models. UML elements may
then be shared and reused for matching EKDM patterns to already recovered
UML model pieces.

o Code generation (WP4) is based on recovered UML models. Those models are
Platform-Independent Models (PIMs) with additional constraints that have been
automatically created by the EKDM to UML transformation rules. Those constraints
are UML stereotypes (annotations for short) used for adding semantic information. In
practice, WP4 input UML models are decorated with extra-information on the very
deep nature of model elements, namely, for the most important elements, entities
(static data with relationships and constraints), business objects (small functional
pieces dealing with entities’ data) and services (bigger functional pieces calling
business objects).

Public

Copyright ! REMICS Consortium 2010-2013 Page 9 / 27

Figure 1. WP3 technology process (1st component)

2.2 Technology innovation
In REMICS, EKDM, the consistent association of KDM with ASTM, has been designed and stabilized
in order to make possible the process described in Figure 1. However, the availability of EKDM does
not solve at all the difficulty of dealing with the high heterogeneity of legacy technologies in terms of
progressive cleaning (see examples in section 2.1) of the legacy material to obtain migration-enabled
models. The process in Figure 1 supposes a lot of flexibility in the way meta-models may be handled
(with a lot of assistance), model transformation programs are modularized, stored and, in general,
managed.
To that extent, a modernization engineering method has to be invented and supported by “intelligent”
tools. Simply speaking, when facing up a well-known legacy technology, say Pacbase COBOL from
IBM, the engineering method and associated tools offer a prewired process with all the predefined
meta-models and related model transformations. Schematically, modernizing amounts to meta-model
instantiation plus model transformation execution. When discovering an unknown legacy technology,
meta-models and transformations must be designed, not from scratch, but from some accumulated
experience available and formatted in a preexisting repository. For example, COBOL dialects share
commonalities. In this respect, taking into account a specific COBOL dialect must take advantage of
what is offered in the repository.
In this line of reasoning, tools must both support “modernization in action” and the modernization
engineering method to create new modernization processes and any linked software artifact each time
a “new” legacy technology is apprehended and introduced in the repository.
In the case of REMICS and BLU AGE®, all meta-models and model transformations are described in
a central repository: the “Knowledge Base” or KB in Figure 2. Moreover, the overall functioning of this
Knowledge Base is based on a “factory” (BLU AGE Factory in Figure 3) to design and operate, legacy
tech. per legacy tech. modernization processes.

Public

Copyright ! REMICS Consortium 2010-2013 Page 10 / 27

This critical component is the result of a long research and development from Netfective Technology
and BLU AGE Software. Some parts of its final development have been supported by REMICS and
have led to the submission of a US patent in April 2013 (acceptance pending). For these specific
reasons, only a concise presentation is provided in this document.
In effect, the Knowledge Base includes:

¥ All concepts of the legacy technology of interest (programming language(s) and data storage
technology(ies), e.g., “sequentially indexed flat files”) in the forms of meta-elements, meta-
relationships and meta-rules;

¥ All associated model transformations and associated conditions for transformation triggering;
¥ Staging and choreography of model transformations.

Besides, the Knowledge Base may be updated to manage legacy application coding practice
specificities and/or new language constructs. This can be done in two ways:

¥ Top down approach: from the central Knowledge Base to publish new concepts and
transformations to all instances of the modernization system,

¥ Bottom up approach: from instances of the modernization system to publish and share new
design patterns and/or annotations used for refactoring. Those elements may then be reused,
enriched, made generic and published to all instances of the modernization system.

Figure 2. WP3 technology innovation overview (1st component)

Traceability along transformations and, possibly code generation (WP4), then become realistic. In
practice, at each stage, traceability information (metadata) is preserved so that:

¥ Refactoring on UML models has impact on EKDM models,
¥ Modernization project managers may keep track of achieved work and remaining work,
¥ Users may “undo” transformations from EKDM to UML,
¥ Data driven and code base driven transformations may be synchronized (data structure

change has impact on both EKDM models and UML models),

Public

Copyright ! REMICS Consortium 2010-2013 Page 11 / 27

¥ Annotations may mark lines and individual statements as per “legacy code base text” while
applying transformations onto EKDM elements.

2.3 REMICS Recover technology (1st component) principles and
methods

As a global result, the principles and methods that have been implemented in REMICS for Recover
are:

1. Extracting the code base and database toward an architectural model fully compliant with
unique worldwide standards, mainly promoting openness and sustainability.

2. Analyzing architectural models, defining design patterns, enriching architectural models with
annotations for guiding the resolution of semantic conflicts (ambiguities) and setting
transformation parameters.

3. Transforming annotated architectural models toward Platform-Independent Models expressed
in UML for openness and portability. Beyond, these are capable of being self-contained
supports for 100% automated code generation.

4. Generating the code base and new database according to the target architecture and
specificities of the platform supporting such architecture.

5. If required, extending architecture concepts and associated transformations:
a. Either at a generic level (based on grammar of the legacy language or based on

design patterns of the target architecture for instance),
b. Or specifically at code level for individual programs and lines of code to remove

semantic ambiguities.
6. Iterating from step 1 to step 5.

3 Hands -on modernization engineering
This section just provides further insights into ways of putting into practice the “theoretical” material
exposed in section 2. What is exposed is what is supported by BLU AGE® as, nowadays, single
candidate for implementing the REMICS Recover technology (first component). As shown in Figure 3,
the modernization engineering method encompasses Migration through the BLU AGE Forward
Engineering module that existed before REMICS.

The starting points of all model transformations are “concepts” as in particular defined and promoted
by the KDM standard (see also Glossary at the end of this document). Transformations will be in
charge of identifying concepts that need to be preserved and later transformed, from those that need
to be discarded. These do not contain application logic semantics. Instead, they are characterized by
their contextual adherence to the legacy platforms. In order to achieve some “cleaning”, a
modernization system like BLU AGE® must describe all concepts and associated transformations in a
platform-neutral way.

Public

Copyright ! REMICS Consortium 2010-2013 Page 12 / 27

Figure 3. WP3 technology (1st component) within BLU AGE¨

3.1 Concept definitions
Typically new concepts are required when:

¥ A new language or database technology is added to the “Reverse” Knowledge Base (Figure	 3,
bottom left-hand side). In this case, a new meta-model and associated concepts must be
created to match to the output of the parser (ASTM model matching to AST structure),

¥ Facing up variation of language. For instance COBOL is a language supporting multiple and
different dialects. One dialect may introduce new concepts on top of the common grammar,

¥ Facing up new architectural concepts, for instance, introducing a new type of database
technology such as NoSQL (https://en.wikipedia.org/wiki/NoSQL) or introducing event-based
programming while the Knowledge Base only conceptualizes the notion of synchronous
procedure call,

¥ A language update (for instance support of Java 7 on top of Java 6) requires updating the
Knowledge Base with new concrete implementation of Java 7 code templates,

¥ Facing up new target architecture framework (e.g., Spring versus EJB, JSF versus Struts, JPA
versus Hibernate).

3.2 Transformation definitions
If concepts are added or modified in the Knowledge Base to manage new semantic elements then
transformations may need to be updated. It is also possible to add new transformations even if no
modification of concepts occurs.
Typically transformation update is required when:

Public

Copyright ! REMICS Consortium 2010-2013 Page 13 / 27

¥ Concepts have been updated or added, and are introducing new semantics or new
architectural capabilities,

¥ Existing concepts happen to have multiple-shape semantics and new transformations are
required to solve ambiguities.

Transformations use concepts stored in the Knowledge Base in order to:
¥ Convert legacy code base and database into technical models (abstract syntax trees mapping

to ASTM), this leads to enable model-to-model transformations,
¥ Refine platform-dependent models to produce architectural models,
¥ Refactor and refine architectural models with semantic annotations that influence

transformation execution decision and implementation to produce enriched architectural
models,

¥ Produce platform-independent UML models. Those UML models are using stereotypes
(annotations) so that those models are “executable”,

¥ Automatically and fully produce all the new application artifacts (both code base and
database) based on the target application requirements.

All transformations are defined in the Knowledge Base (design environment). Then they are
provisioned into the Reverse Modeling and Forward Engineering (execution environment) to be
executed (Figure 3). The Reverse Modeling and Forward Engineering framework is an execution
engine that executes transformations defined at the highest level. Beneath, transformations are
managed with the following organization (see also sample at the bottom of Figure 4):

¥ Module:
o A module defines the input and output meta-models. They may be multiple input

meta-models and many output meta-models;
o A module contains transformations;
o Transformation choreography is defined by modules.

¥ Transformation:
o Input and output concepts are defined for each transformation,
o A transformation contains rules while rules contain the transformation logic for

individual concepts and associated context;
o Transformation may be responsible for refactoring or refining.

¥ Rule:
o A rule contains the transformation logic for a given set of concepts for a specific

context. There are three types or rules:
 Direct (the transformation engine manages the choreography)
 Indirect (explicit call to another rule inside a rule)
 Init (rule with no associated input concept. Init rules execute whenever a

transformation is executed)

Public

Copyright ! REMICS Consortium 2010-2013 Page 14 / 27

Figure 4. Model transformation management in BLU AGE¨

3.3 Annotation definitions

Annotations are means to add semantics to EKDM models in order to:
¥ Use them as parameters in existing transformations:

o For instance the <<job step>> annotation will transform the line of code to which
this annotation is applied into a step in a batch. All the logic will be modernized as
a service, but <<job step>> will also create an upper service (the step). The
underlying service may be reused for online and synchronous transaction.
However the step will embed the call to that service and this step is part of a batch

Module	 M1	

Transformation	
T1	

Rule	 R1	

Rule	 R2	

Transformation	
T2	 Rule	 R2	

Public

Copyright ! REMICS Consortium 2010-2013 Page 15 / 27

(asynchronous service). The usage of this service in this context (step) creates
additional artifacts and different target architecture.

¥ Do refining at EKDM level based on user decision:
o For instance splitting a large block of procedural call into multiple service calls.

New signatures of services are created based on dataflow analysis and on code
boundaries marked with the <<modernized as>> annotation.

¥ Do refining at EKDM level based on pattern recognition:
o The goal of pattern recognition is to identify structured and repetitive blocks of

code that must be transformed into very different implementation shapes.
Typically algorithms used to manage date computation, string manipulation, data
exchange between application components, transaction to database fall in this
category. Usually the paradigmatic gap between legacy and target architecture is
so huge that a “translation” would damage the modernized application
(maintainability, performance, compliancy with coding principles…). Moreover
legacy languages are usually using lower abstraction; it is quite common that
“programming framework” and associated APIs had been created to boost
abstraction. In this case, the semantics is attached to those APIs.

o In order to identify and map legacy patterns to object oriented constructs and
service oriented architecture, the process is as follows:

 Defined legacy pattern structure:
¥ Either using regular expressions,
¥ Or by using the EKDM model structure and type of model

elements of the application to carry out graph analysis.
 Compare patterns to code (complete application, list of programs,

selection of code within program),
 Analyzing matching elements and matching score (a view displays each

match with file name, line number and matching score),
 Validate matching elements, in which case annotations are added to the

EKDM model for all matching elements.
¥ Ignore legacy code:

o <<skip>>: this annotation is used to remove legacy code that does not need to be
modernized (“how it does” versus “what it does”, dead code).

¥ Change the semantics of individual lines of code or even individual statements:
o Annotation applies to blocks of code, lines of code, statements, groups of

meaningful words and keywords, individual words,
o Annotation may be combined (for instance 10 lines annotated with one annotation,

and some elements while those lines are annotated with another annotation).

By using meaningful annotations, it is actually possible to enrich or alter the semantics of EKDM
models prior to their transformation into UML. It is possible them to use user input information to
change transformations, to apply functional refactoring, to manage ambiguities which require user
expertise, evaluate and validate contextual information for a section of code to remove ambiguities,
use design patterns to replace matching elements with a new implementation. Annotations are used
both at program level, block of code level, line of code level and statement level.

3.4 Engineer ing views and transformation wizards
It is possible to enrich the EKDM models to parameterize transformations with contextual information.
In this cope, the Reverse Modeling module of BLU AGE® is in charge of:

¥ Receiving transformations and annotations definitions,
¥ Enabling EKDM model analysis and marking,
¥ Executing pattern matching,

Public

Copyright ! REMICS Consortium 2010-2013 Page 16 / 27

¥ Adding pattern definition and promoting definitions to the Knowledge Base,
¥ Executing transformations,
¥ Injecting traceability elements in all models (from the model extracted out of the code

base to the UML models),
¥ Displaying project management view.

EKDM model analysis is performed through the use of generic KDM viewers. It displays information
that is independent of the legacy and target architecture. Displayed information both represents the
current structure of the legacy application and the result being the transformation toward Service
Oriented Architecture and Object-Oriented principles.

Figure 5. Populating EKDM models in BLU AGE¨

Handling EKDM models then amounts to analyzing the semantics, previewing transformation results
and foreseeing ambiguities in order to take actions. Actions are performed through wizards:

¥ TOM (Transient Object Modernization):
o TOM is used to apply transformations to data structures to create object class

definitions and associated instances. TOM is used for transient object (objects in
memory). TOM imports persistent object class definitions from the BLU AGE
Database Modernization modules; it establishes the mapping to transient objects.

¥ Pattern editor (design pattern definition and matching):
o Analyzes EKDM models to propose potential patterns; allows defining new patterns.

Public

Copyright ! REMICS Consortium 2010-2013 Page 17 / 27

o Supports pattern matching against EKDM.
o Allows validating and rejecting matches; allows undo if matched elements need to be

unmatched.
o Binds matched patterns to UML elements.

¥ Transmodeling wizard:
o This wizard launches the EKDM to UML transformations. It allows the following:

 Refactoring of signatures and names: all services to be created are displayed
and the user may validate suggested signatures or change them,

 Missing mapping analysis: prior to executing transformation to UML, the
transmodeling wizard validates whether all legacy data structures are mapped
to object classes and Instances or if there are missing mappings. The user
may decide either to pursue the transformation – in which case later
transformation will be required to add missing mappings and to update
extracted UML models – or to stop the transformation in order to solve
missing mappings.

 On the fly data mapping: the transmodeling wizard feature allows fixing “on
the fly” missing mappings by pointing to already extracted class definitions
and by binding data structures to object classes.

o UML extraction: the transmodeling wizard launches and executes EKDM to UML
transformations.

¥ Annotation editor:
o The annotation editor allows users marking EKDM models with semantic information,
o It allows pattern recognition to automatically add annotations,
o It allows “transmodeling” (transformation from EKDM to UML) to annotate

automatically EKDM models; this leads to synchronizing EKDM and UML when new
transformations occur.

3.5 Use of annotations (semantic tags)
As previously explained the annotations editor allows enriching EKDM models with additional
semantic information. The editor may be used to either:

¥ Have the user selected items and to add annotations,
¥ Or visualize results of automatically created annotations:

o Created by pattern recognition,
o Created by transmodeling.

Moreover the annotation editor allows defining new annotation and pushing these to the Knowledge
Base. New annotations may be used to:

¥ Add information to manage the project and share comments between members of the
modernization project. Those annotations do not modify transformations.

¥ Add information to implement new transformations. In such a case annotations may be used
to:

o Add conditional information for managing different flows of transformation,
o Add information that is consumed to produce new artifacts,
o Overlay metadata (properties of EKDM and UML elements) by means of a specific

EKDM element taking advantage of the information embedded in the annotation.

3.6 Pattern detection

Public

Copyright ! REMICS Consortium 2010-2013 Page 18 / 27

In order to instrument the identification of design patterns in the legacy application, it is possible to
scan the code base with regular expressions; however this process is suffering from the following
limitations:

¥ One may at least have the core structure of each pattern that is investigated,
¥ Regular expressions are syntax-based and are not convenient to manage variation in text

fragments with the same meaning (simple examples: if (a EQUAL B), if (a IS EQUAL B), if(a
IS EQUAL TO B), if (NOT a IS DIFFERENT FROM b).

The pattern recognition mechanism uses a different process: it browses the EKDM models which can
be processed as a graph. However, the transformation to EKDM models is such that all semantic
variations converge to individual EKDM concepts. It is therefore possible to browse EKDM models that
are not suffering from semantic variation and compute “graph signature” by analyzing self-contained
clusters of EKDM elements.

The pattern engine then suggest patterns, each is identified with a unique identifier and matching
elements. EKDM elements are linked to the original code base in order to name program (file) name,
line number and text of the code base that potentially matches. Each pattern match is displayed with a
variability score to decide it this is really a match, if it is a match but requires some adaptations (like
ignore type of second variable) or if it is a false positive.
The user may then decide which pattern to validate, which to use to automatically annotate the code.
The user may as well publish the pattern to the Knowledge Base so that other users benefit from it.

Figure 6. Pattern detection in BLU AGE¨

Patterns can be edited later on. Undo matching is possible if pattern matching occurs to identify and
annotate elements that users intend to modernize with a different strategy.

Public

Copyright ! REMICS Consortium 2010-2013 Page 19 / 27

4 REMICS Recover technology (2 nd component)

4.1 Introduction
Developing a new software system based on legacy software can be quite hard and labor-intensive.
The main issue is to preserve the essential application and business logic.

The 2nd component of the REMICS Recover technology is based on the ReDSeeDS-TALE approach.
It allows for the recovery and migration of application logic information from legacy systems. The
understanding of application logic extraction from the system design is fundamental to the effective
recovery of business value contained in the legacy system. The application logic of an IT system
defines sequences of user-system interactions in relation to the domain logic within which the system
operates. In our approach, such information can be extracted from any existing system by determining
its observable behavior and stored in the form of requirements-level models conformant to the RSL
language (see Kaindl et al. 2009). This language serves as an intermediate language between the
recovery and the migration steps. The migration step uses the ReDSeeDS approach to generate the
target system structure. Specifications in RSL can be transformed to component architectures (e.g. in
UML), platform specific design (e.g. cloud-enabled application) and even to implementation (code).

The proposed approach is supported by a tooling framework and is a supplement to other methods for
reuse and migration of legacy systems that are being developed within the REMICS project.

The ReDSeeDS-TALE tool suite automates capturing essential knowledge on the application logic of
legacy systems by recording their observable behavior. The recovered knowledge is represented with
use case scenarios having precise sentences describing user-system interactions. The tool suite has a
heterogeneous architecture and is composed of several Eclipse-based applications. The central idea
is to use a standard test automation system to capture test scripts and then translate them into
constrained natural language scenarios that are machine processable. This allows for further
automatic transformations even down to code.

Public

Copyright ! REMICS Consortium 2010-2013 Page 20 / 27

4.2 Recovery process

Figure 7: Overview of the recovery process

Overview of the process allowing for recovery of application logic information from the existing
systems is shown in Figure 7. The recovery phase encompasses the idea of semi-automatic reverse
engineering. Throughout this process we use the “essential” specifications according to the RSL-AL
language (see REMICS deliverable D3.6). We first analyze the legacy system’s UI by using a GUI-
ripping tool (the tool that allows to record actions performed by the user in the tested system). Based
on this semi-automatic analysis we generate the initial RSL-AL model which can then be modified by
hand to refine it. At the beginning, the model consists of unordered scenarios which have to be
assigned to specific use cases. After that there is a need to correct the names of some notions and to
add missing sentences and elements. This is due to the fact that the GUI-ripping tool is not able to
automatically recognize some user interface elements with complex structure properly. Subsequent
steps of the process are described in detail in the sections below.

4.3 Recovery techniques
The first step of the recovery process is performed using a GUI-ripping tool. This step is performed
semi-automatically. It involves manual traversal through the system’s user interface during which the
system’s observable behavior is systematically scanned. A user (preferably a person who normally
works with the legacy system and is aware of its behavior), simply interacts with the legacy system
sequentially performing individual functionalities (use cases). During this, the GUI-ripping tool records
the flows of interaction representing the system’s application logic. This includes the user inputs
(buttons clicked, data entered, widget focus gained, etc.) and respective system responses (windows
displayed, messages shown to the user or even textual console behavior). In order to capture the
most extensive application logic knowledge, it is important to traverse through all possible functional
paths, including exceptional system’s behavior resulting, for example, from entering invalid data,
operation cancellation etc. The GUI-ripping tool stores all this information in XML-based scripts. In our

Public

Copyright ! REMICS Consortium 2010-2013 Page 21 / 27

tool chain we use IBM Rational Functional Tester as the GUI-ripping tool because it supports wide
range of UI technologies including those based on textual consoles. However, any tool allowing
interaction recording to some form of structured text files may be integrated with our tooling
framework.

The next step of the recovery process is to transform scripts obtained from the GUI-ripping tool into an
RSL-AL model. This is done with the TALE (Tool for Application Logic Extraction) tool. This novel tool
automatically extracts sequences of user-system interactions producing scenarios with SVO
sentences. All the extracted scenarios are attached to use cases as their representations and are
grouped within the “Functional Requirements” package being part of the recovered model.

Figure 8: ÒDodaj kontaktÓ scenario created from test script

Figure 8 8 presents a scenario created automatically by the TALE tool from a test script. The scenario
is correct in the formal sense, but the actions described don’t fully reflect the system’s functionality.
This is caused by the fact that the script processing tool is unable to define the context of the executed
actions. For example, sentence no. 2 means that the system should fetch “Szczegóły kontaktu data”1
(eng. contact details) before displaying the window corresponding to that data. This kind of action is
required in the use cases describing the editing of some elements but should not be included in the
“add element” type of use case.

Furthermore, the TALE tool also re-creates the domain vocabulary containing domain notions (created
mainly based on data passed to and from the user) and UI elements (windows, buttons, input fields,
etc.) used in the recovered scenarios. What is important, the tool is able to extract information about
the composition of specific notions. For example, when there is a form displayed to enter personal
data (such as first name, last name, etc.), a composite notion for ”Person data” is created. Such notion
contains descriptions for every field filled on the form, instead of a number of unrelated notions
reflecting these fields. This reduces the amount of simple notions created from the GUI recordings and
therefore reduces the unnecessary complexity of the recovered model. All this elements are stored in
the “Domain Specification” package.

1 All the examples In this section are taken from the case study system (SZOK) that is written for the
Polish audience and thus its user interface is in Polish.

Public

Copyright ! REMICS Consortium 2010-2013 Page 22 / 27

Figure 9: Domain mode l created from test script

Erreur ! Source du renvoi introuvable. 9 presents the recovered domain model created based on the
test script data. It presents the “Szczegóły kontaktu window” related to “Szczegóły kontaktu data” that
is to be shown in the window. „Szczegóły kontaktu data” contains 4 attributes.

The extracted use case scenarios linked to a domain vocabulary form the initial RSL-AL model.
Thanks to the characteristics of the RSL-AL language, this model is easily understandable to people
(even those barely knowledgeable of the original system) thus giving the possibility of its easy
extension and modification. First of all, some modifications are needed because of the fact that not all
of the application logic information can be automatically retrieved from the recording scripts. This
includes sentences that control the flow of scenario execution (conditions and <<invoke>> sentences)
and sentences expressing internal system operations (e.g. calls to business logic operations), such as
”System verifies data”, ”System stores information”, ”System deletes item from item list” etc. Also, the
domain vocabulary usually needs manual refactoring – mostly renaming some notions.

Figure 10: Manually improved "Dodaj kontakt" scenario

Figure 10Erreur ! Source du renvoi introuvable. shows an improved scenario from Figure 8.
Aforementioned sentence no. 2 has been deleted and sentences 5 and 6 were added manually.
These new sentences describe actions performed internally by the system (data validation and
saving).

Public

Copyright ! REMICS Consortium 2010-2013 Page 23 / 27

Figure 11: ÒSzczeg—!y kontaktu windowÓ sceenshot

Figure 1111 presents how the “Szczegóły kontaktu window” looks like in the legacy system SZOK.
Based on the data input controls contained in this window, four attributes were generated in the
domain specification as presented in Erreur ! Source du renvoi introuvable. 9. However, the names
of these controls were not automatically extracted and they need to be corrected manually.

Figure 12: Manually improved domain model

Figure 1212 presents the domain model after manual corrections. The names of the attributes have
been changed in accordance with the original system. Additionally, “System zarządzania obsługą
kredytów window” (eng. credit management system window) has been renamed. This change is
caused by the fact that “System zarządzania obsługą kredytów window” is the main application
window of the legacy system that is active during application runtime and only its content changes
depending on the current task.

All these modifications can be made in the ReDSeeDS tool, which offers a comprehensive RSL-AL
editor. It allows for writing use case scenarios in accordance with the rules of the language grammar.
Managing of domain specification elements from the level of the use case editor or using tree-like
structures is possible as well. Switching between ReDSeeDS and TALE is seamless since both tools
are integrated within a single framework and they share common data model which is an
implementation of the RSL-AL meta-model.

Public

Copyright ! REMICS Consortium 2010-2013 Page 24 / 27

5 Conclusion
REMICS Recover tech. promotes a set of principles, methods and best practices synthetically
described in this document.

The first component of this tech. is divided into a theoretical contribution and practical contribution.
The former will be later exposed in Gaëtan Deltombe’s thesis (to be defended in Dec. 2013). He is the
main author of EKDM; He is a Ph.D. student at the University of Pau; His thesis is funded by
Netfective with the help of REMICS and a French CIFRE grant (see:
www.anrt.asso.fr/fr/espace_cifre/accueil.jsp). EKDM encompasses a meta-model and appropriate
algorithms to transform EKDM models from ASTM (upstream) to UML (downstream) models. The
implementation of these is supported in the BLU AGE® commercial tool.

In effect, the practical contribution (from an innovation viewpoint), is the management of meta-models
and model transformation programs in a knowledge base and a “factory”, i.e., an engine that allows
the intelligent modularization, storage and customization of these. Effectively, an end-to-end
modernization engineering method has been defined and offered in the BLU AGE® commercial tool.
This method has also been subject to the submission of a US patent. To close, one may notice that a
key feature of this Recover tech. is its seamless link to Migration addressed in WP4 via UML models.

The first component of the REMICS Recover tech. has been applied with success to the DOME case
study while the DISYS case study raises problems. Although UML models were produced to fully
represent the DISYS reporting software, the complexity of this code (“nightmare structuring”)
precludes for factorizing the UML models in well-formed pieces: business objects for small-piece
functionalities and services for larger functional pieces. Namely, in D1.5, a cyclomatic analysis of the
code would lead to non-maintenable services in the modernized applications: very long services with
“if-then-else” structures each 3 lines!

As for the 2nd component of the REMICS Recover technology, the details of the recovery process and
techniques were presented. This component concentrated on the use of the TALE and ReDSeeDS
tools to recover the observable behavior of legacy systems. It has to be noticed that these tools do not
operate on the legacy code but use the legacy system’s user interface to recover its application logic
and observable data. This allows for a modernization process that does not depend on the code that
might have become very tangled and in result not recoverable by the methods of the first component.
This recovery component is tightly integrated with the migration components that are based on the
generated and edited requirements models, as described in the WP4 deliverables.

Public

Copyright ! REMICS Consortium 2010-2013 Page 25 / 27

6 Bibliography
¥ G.Deltombe: Model-Driven Software Modernization, French thesis, to be defended in Dec.

2013
¥ G.Deltombe, O.Le Goaer, F.Barbier: Bridging KDM and ASTM for Model-Driven Software

Modernization, proceedings of The 24th International Conference on Software Engineering and
Knowledge Engineering, Redwood City, California, July 1-3, 2012

¥ F.Buschmann, K.Henney, D.C.Schmidt: Pattern-oriented software architecture: On patterns
and pattern languages, John Wiley ed., 2007

¥ P.Mohagheghi, F.Barbier, A.Jørgen Berre, B.Morin, A.Sadovykh, T.Sæther, A.Henry,
A.Abhervé, T.Ritter, C.Hein, M.Śmialek: Migrating legacy application to the Service Cloud
Paradigm in European Research Activities in Cloud Computing, Cambridge Scholars
Publishing, pp. 103-128, 2012

¥ F.Barbier, G.Deltombe, O.Parisy, K.Youbi: Model Driven Reverse Engineering: Increasing
Legacy Technology Independence, proceedings of The Second India Workshop on Reverse
Engineering in 4th India Software Engineering Conference, Thiruvanantpuram, India, CSI ed.,
pp. 5-9, February 23, 2011

¥ F.Barbier, S.Eveillard, K.Youbi, O.Guitton, A.Perrier, E.Cariou: Model Driven Reverse
Engineering of COBOL in Information System Transformations: Architecture Driven
Modernization Case Studies, Morgan Kaufmann, pp. 283-299, 2010

¥ H. Kaindl, M. Śmiałek, P. Wagner i e. al., „Requirements Specification Language Definition,”
2009

¥ W. Nowakowski, M. Śmiałek, A. Ambroziewicz and T. Straszak, "Requirements-Level
Language and Tools for Capturing Software System Essence", ComSIS Journal, accepted for
publication

¥ W. Nowakowski, M. Śmiałek, A. Ambroziewicz, N. Jarzębowski and T. Straszak, "Recovery
and migration of application logic from legacy systems", Computer Science, vol. 13, no. 4, pp.
53–70, 2012

¥ M. Śmiałek, A. Ambroziewicz, W. Nowakowski, T. Straszak and J. Bojarski, "Using structured
grammar domain models to capture software system essence", in 2012 Federated
Conference on Computer Science and Information Systems (FedCSIS), 2012, pp. 1349–1356

7 Glossary
¥ Annotation : Annotations refer to “Semantic Annotations”. They are a specific concept in the

Knowledge Base; their purpose is to add/change semantics to individual code or data artifacts
with atomicity down to individual tokens in a line of code (or an attribute to a data structure).
This additional information allows triggering different transformations to manage ambiguities.

¥ AST (Abstract Syntax Tree): It is a tree representation of the structure of source code; this
tree is no longer a text but already a model. AST are produced from parser programs that
transform text (code base) into a model by using the grammar of a programming language.
The invention uses AST to transform them into ASTM and KDM-compliant models.

¥ ASTM: Abstract Syntax Tree Meta-model. ASTM is an industry standards managed by the
OMG. ASTM is used jointly with KDM to manage code statements.

¥ Batch : Batch processing is execution of a series of programs (“jobs”) on a computer without
manual intervention. Jobs are setup so they can be run to completion without manual
intervention.

¥ CICS: CICS is middleware designed to support rapid, high-volume online transaction
processing. A CICS transaction is a unit of processing initiated by a single request that may
affect one or more objects. This processing is usually interactive (screen-oriented), but
background transactions are possible.

Public

Copyright ! REMICS Consortium 2010-2013 Page 26 / 27

¥ Cost of ownership : All costs contributing to the budget for making and managing software.
These can be labor cost, loss of efficiency that increases effort for creating software, hardware
and software cost of elements contributing to software making and running in production.

¥ Code base : Text complying with programming language grammar and syntax used to
produce executable software.

¥ Concept (in Knowledge Base): Elements of the Knowledge Base in charge of the semantics.
Elements describe the architecture (both the legacy and target architecture), code base and
database design, concrete implementation of code base and database, design patterns and
semantic annotations. Concepts are consumed as inputs and outputs of transformations.

¥ Database : Repository of data records used by software to store information. This can be a file
system, a relational database or any data repository that can be accessed by a programming
language or operating system.

¥ Design pattern : In software engineering, a design pattern is a general reusable solution to a
commonly occurring problem within a given context in software design. The same design
pattern may have different concrete implementation in the code base while performing the
same function. The invention fundamentally manages design patterns in order to handle
variations both on design pattern definition and implementation.

¥ JCL : It is a scripting language used on IBM mainframe operating systems to instruct the
system on how to run a batch job or start a subsystem.

¥ KDM: Knowledge Discovery Meta-model. KDM is an industry standard managed by the OMG.
KDM is used to formally describe Concepts and Transformations.

¥ Knowle dge Base : Information repository describing transformations for performing
modernization of software. The Knowledge Base contains structured information describing
architecture, code syntax and grammar, data structure in order to apply transformations.
Transformations algorithms are included into the Knowledge Base.

¥ Legacy language : Programming language is less use than previously. This may be caused
because experienced people are retiring, because language is end of life, because other
languages bring more productivity.

¥ Legacy software : Software that requires be changing and replacing by software performing
the same function. This is usually software which technical debt and/or cost of ownership does
not comply with need for change or software that may suffer from a technical outage requiring
a programming language or platform change.

¥ Meta-model : Simply speaking, a meta-model is a set of metadata. For instance, metadata in a
database is a table row in which the “table” column is equal to “Client” and the “primary key”
column is equal to “Client_id”. These metadata tell us that it exists a “Client” table having
“Client_id” as primary key attribute. Common data are “terminal data”, say, “John Smith” with
“028A” as “Client_id” value. Non-terminal data are potentially metadata. This idea introduces
meta-metadata and therefore meta-meta-models (as promoted by UML in particular and
modern computer science in general). Meta data are used to formally populate and normalize
models.

¥ Modernization : Transformation of existing software (code base, database) into new software
that performs the same functionalities. Modernized software lets its users perform all actions
with the same results compared to the legacy software.

¥ Modernization system : The system in charge of carrying out the modernization of legacy
applications.

¥ PDM: Platform-Description Model. A PDM is the description of the execution platform. PDM
are described using Concepts in the Knowledge Base. PDM is used to transform a PIM into a
PSM; the latter can then be derived to text (code base and database). A PDM is used to
transform a PSM into a technology-free UML model when extracting legacy application logic
toward UML.

¥ Platform : It refers to the technology onto which software executes. Computer, database,
operating system and programming language are part of the platform.

¥ PIM: Platform-Independent Model. This is a UML model that describes the application logic
independently of the platform. The real code base and database can be implemented to
different platforms from the same PIM. New code base and database are automatically
generated from the PIM with no need for handwriting software artifacts.

¥ PSM: Platform-Specific Model. PSM is under the influence of the execution platform. PSM are
a step between software artifacts code base, database on one side, and PIM on the other

Public

Copyright ! REMICS Consortium 2010-2013 Page 27 / 27

side. Because PSMs are models, they can be used to create PIMs from or to produce
software artifacts.

¥ Refactoring : It is a “disciplined technique” (transformation) for restructuring an existing body
of code or model, altering its internal structure without changing its external behavior.

¥ Refining : It is a transformation used for enriching semantics of an existing body of code or
model.

¥ Semantic modernization : Transformation of an application based on logic extraction and
complete re-architecturing. Semantics is identified based on pattern and context of usage of
patterns to identify what does each section of code versus how it does it. This is opposed to
line-by-line transformation where all tokens in one line of code are transformed into a new line
of code that performs the same operation (“we do not know what it does but it does the
same”).

¥ Singleton : In software engineering, the singleton pattern is a design pattern that restricts the
instantiation of a class to one object. This is useful when exactly one object is needed to
coordinate actions across the system.

¥ SOA: In software engineering, a service-oriented architecture (SOA) is a set of principles and
methodologies for designing and developing software in the form of interoperable services.
These services have well-defined business functionalities that are built as software
components (discrete pieces of code and/or data structures) that can be reused for different
purposes. Service-orientation requires loose coupling of services with platforms that underlie
applications. SOA separates functions into distinct units, or services, which developers make
accessible in order to allow users to combine and reuse them in the production of applications.

¥ Technical debt : The cost for maintaining an application to a given quality level or to restore
quality to a target level. Technical debt increases when resources are rare, when
programming practices are not homogeneous, when underlying platform cost structure is high,
when continuous integration is not automated but relies on human labor. Unstructured code
based on aging language and aging platforms increases technical debt.

¥ Token : May be used as “word” in a line of code, including punctuation. A token is a string of
characters, categorized according to the rules as a symbol (e.g., IDENTIFIER, NUMBER,
COMMA). Consider this expression in “sum = 3 + 2;”

Token table:
 Token type

sum Identifier

= Assignment operator

3 Integer literal

+ Addition operator

2 Integer literal

; End of statement

¥ Transmodeling : It is the conversion of EKDM models to UML models that are platform-
independent.

