

REuse and Migration of legacy applications to Interoperable Cloud
Services

REMICS

Small or Medium-scale Focused Research Project (STREP)
Project No. 257793

Deliverable D2.4

REMICS Handbook, Interim Release

Work Package 2

Leading partner: Netfective

Author(s): Tecnalia, SINTEF, DOME, Fraunhofer, SOFTEAM, Netfective, DISYS,
WUT, IICT

Dissemination level: Public

Delivery Date: 26 January 2013

Final Version: 2.0

Versioning and contribution history

Version Description Contributors

0.1 Document initialized. Frank Barbier (Netfective)

0.2 Template for different phases. Gorka Benguria (Tecnalia)

0.3 Guidelines contributions. Tecnalia, SINTEF, DOME,
Fraunhofer, SOFTEAM,
Netfective, DISYS

0.5 Methodology update. Tecnalia, SINTEF, DOME,
Fraunhofer, SOFTEAM,
Netfective, DISYS r

0.6 Review. WUT, Fraunhofer

0.7 Final version for M24. Gorka Benguria (Tecnalia)

0.8 Restructuring for agile extensions splitting the
deliverable into three parts: Part 1 provides
information about Software as a Service (SaaS)
and Migration challenges. Part 2 provides an
overview of the REMICS Methodology. Part 3
describes how to use the REMICS Methodology
Wiki.

Brian Elvesæter (SINTEF)

0.9 Tool mentors into the EPF. All

0.10 Role assignment to task. Sylvia Lieva (IICT)

0.11 Work Product assignment to task. Gorka Benguria (Tecnalia)

0.12 Integration of EPF in the document. Final
restructure of the main part of the document
with additional information moved into
appendixes.

Gorka Benguria (Tecnalia)

0.13 Internal WP2 review. Brian Elvesæter (SINTEF)

0.14 Draft ready for internal peer review. Gorka Benguria (Tecnalia)

0.15 Addressed internal peer review comments.
Version ready for approval by the project
consortium.

Gorka Benguria (Tecnalia)

2.0 Final formatting and layout. Gorka Benguria (Tecnalia)

Executive Summary

This deliverable D2.4 is focused on the documentation of the concise methodological support to end-
users of REMICS outcomes for the migration of legacy systems to Service Cloud platforms. The
deliverable has two parts:

¶ Online handbook ï the REMICS Methodology Wiki available at http://remics.modelbased.net

¶ Handbook user guide ï represented by this document

The online handbook is provided using the Eclipse Process Framework (EPF) Wiki available at
http://remics.modelbased.net where the REMICS Methodology provides detailed guidance about tasks
for each of the REMICS Methodology activity areas, i.e. 1) Requirements and Feasibility, 2) Recover,
3) Migrate, 4) Validate, 5) Supervise, 6) Interoperability and 7) Withdrawal, including information about
the usage of the tools developed in the project inside the methodology.

The handbook user guide is represented by this document. This document describes the usage of the
online representation of the REMICS Methodology developed in the open source software process
engineering tool EPF Composer (http://www.eclipse.org/epf), which follows the OMG SPEM
specification for software process engineering, and hosted as an EPF Wiki
(https://github.com/ostraaten/epfw).

The deliverable is also is accompanied by a standard definition of the handbook (methodology plus
tools). The standard definition can be found in the REMICS website (www.remics.eu).

The online handbook (EPF Wiki) provides more insight guidelines and methodological support on the
usage of the different tools inside the methodology presented in D2.2 and extended in D2.7. This
handbook is planned to be provided in two main versions, where this one is the first one. The first
version is focused on the first results of the project, whereas the second version will focus on the
complete set of results of REMICS, including those from the latter extension of the project.

This deliverable follows the SPEM (Software & System Process Engineering Metamodel) approach for
formalisation of the methodology guidance, defining roles, tasks, work products, workflows, tool
mentors and additional guidelines. The model library that comprises the methodology and its
guidelines is released as an open source project. The EPF representation of the REMICS
Methodology can serve as the baseline for other model representations such as the possible resulting
ESSENCE specification proposed by the SEMAT initiative as a response to the OMG FACESEM RFP.

The deliverable expected audience are project leaders that want to have some support in the steps to
be followed in a technological migration effort and the knowledge in the tools that can be applied and
how can be applied.

The deliverable has been written as an evolution of the previous D2.2 where the methodology was
described and delivered as a public document. In the evolution stage we added the agile perspective
and the tool usage guidelines. We aim to provide a complete self-standing deliverable that can be
used to understand both the REMICS Methodology, and the REMICS tools developed in the project.

http://remics.modelbased.net/
http://remics.modelbased.net/
http://www.remics.eu/

Table of Contents

EXECUTIVE SUMMARY ... 3

TABLE OF CONTENTS .. 4

1 INTRODUCTION ... 6

2 MIGRATION CHALLENGES .. 7

2.1 SOFTWARE AS A SERVICE .. 7
2.2 M IGRATION DIMENSIONS .. 7
2.3 M IGRATION AND REMICS CHALLENGES .. 9

3 OVERVIEW OF THE REMICS METHODOLO GY .. 13

3.1 TERMINOLOGY .. 13
3.2 METHODOLOGY MAIN ACTIVITY AREAS... 14
3.3 LIFECYCLE ... 15
3.4 PRINCIPLES .. 17

4 OVERVIEW OF METHODOL OGY TOOL SUPPORT .. 18

5 USER GUIDE FOR THE REMICS METHODOLOGY WI KI .. 20

5.1 HOW TO NAVIGATE THE REMICS METHODOLOGY WIKI .. 20
5.1.1 Getting started ... 22
5.1.2 Delivery processes... 22
5.1.3 Practices .. 23
5.1.4 Role ... 23
5.1.5 Work products ... 23
5.1.6 Tools .. 24
5.1.7 Tools mentors .. 24

5.2 HOW TO READ A TASK ... 25
5.3 HOW TO READ A TOOL MENTORS ... 25
5.4 HOW TO READ A DELIVERY PROCESS ... 26

6 CONCLUSION .. 27

7 REFERENCES .. 29

APPENDIX I. METHODOL OGY PRACTICE EXAMPLE .. 30

I.1. REQUIREMENTS .. 30
I.2. PURPOSE ... 30

I.2.1 Apply Techniques to Evaluate Feasibility ... 31
I.2.2 Remaining tasks .. 31

APPENDIX II. EPF DEVELOPMENT APPROACH AND STEPS FOR AGILE EXTENSION 33

II.1. NEW TERMINOLOGY ADAPTATION .. 33
II.2. REDEFINE THE ACTIVITY DIAGRAMS ... 33
II.3. PHASE RENAME ... 34
II.4. TASK DESCRIPTION ADDITION ... 34
II.5. TOOL MENTOR IMPORT .. 35
II.6. TOOL MENTOR CREATION .. 38
II.7. TOOL MENTOR ASSIGNMENT .. 39
II.8. ROLE AND WORK PRODUCT ASSIGNMENT .. 40

APPENDIX III. FURTHER DETAILS ON T HE MIGRATION CHALLEN GES 41

III.1. ORGANISATIONAL ... 41
III.2. REQUIREMENTS .. 41
III.3. TECHNOLOGICAL .. 41
III.4. ARCHITECTURAL .. 42
III.5. PROCEDURES .. 42

APPENDIX IV. METHODOLOGY PRINCIPL ES ... 43

IV.1. WITH RESPECT TO THE METHODOLOGY .. 43
IV.2. WITH RESPECT TO THE MODELLING ... 44
IV.3. WITH RESPECT TO THE ARCHITECTURE .. 44
IV.4. WITH RESPECT TO THE DEPLOYMENT ... 45
IV.5. OTHER SECONDARY PRINCIPLES ... 46

1 Introduction

This deliverable is focused on the documentation of the concise methodological support to end-users
of REMICS outcomes for the migration of legacy systems to Service Cloud platforms. The document
has a parallel representation of the methodology support in a software process engineering model, in
this case a representation in SPEM in the Eclipse Process Framework (EPF) Composer tool
(http://www.eclipse.org/epf), and published online as a Wiki at http://remics.modelbased.net using the
EPF Wiki (https://github.com/ostraaten/epfw). This means that this document is accompanied by a
standard definition of the methodology described.

The handbook provides more insight guidelines and methodological support on the usage of the
different tools inside the methodology presented in D2.2 and extended in D2.7. This handbook is
planned to be provided in two main versions, where this one is the first one. The first version is
focused on the first results of the project, whereas the second version will be focused on the complete
set of results of REMICS, including those from the latter extension of the project.

This deliverable follows the SPEM approach for formalisation of the methodology guidance ïdefining
roles, tasks, work products, workflows, tool mentors and additional guidelines. The methodology
model is released as open source in the project website (www.remics.eu). The model representation
of the REMICS Methodology can be used as a baseline for other standard representations, e.g. the
possible resulting ESSENCE specification proposed by the SEMAT initiative as a response to the
OMG FACESEM RFP.

The remainder of this document is structured as follows:

¶ Section 2 ï Migration Challenges: Describes the big context of the migration project
contextualizing the REMICS focus. The challenges identify the main barriers of the REMICS
use cases due to the topological and technological migrations.

¶ Section 3 ï Overview of the REMICS Methodology: Presents an overview of the proposed
methodology addressing the terminology used, the main activity areas, the proposed lifecycle
and the principles.

¶ Section 4 ï Overview of the Methodology Tool Support: Presents the different tools to be used
to simplify and speed up the migration process.

¶ Section 5 ï User Guide for the REMICS Methodology Wiki: Explains how to navigate the
online handbook, i.e. the REMICS Methodology Wiki with and tool support documentation.

¶ Section 6 ï Conclusions: Summarises lessons learnt from methodology development point of
view with regards to future improvements.

After these main sections some additional sections are added for convenience.

The document has the following appendixes:

¶ Appendix I. Methodology Practice Example

¶ Appendix II. EPF Development Approach and Steps for Agile Extension

¶ Appendix III. Further Details on the Migration Challenges

¶ Appendix IV. Methodology Principles

http://remics.modelbased.net/
http://www.remics.eu/

2 Migration Challenges

2.1 Software as a Service

The cloud scenarios (IaaS
1
, PaaS

2
, and SaaS

3
) offer software developers and providers a new wide

range of possibilities for solving many issues in their solutions and even for providing new
functionalities. Some examples of issues that the cloud technologies may solve are: server availability,
server resizing, load balancing or storage resizing usage accountancy. Some examples of new
functionalities that could be integrated are backup facilities, remote management, remote monitoring
or statistics.

Figure 1: Migration dimensions

Unfortunately, the cloud scenarios could not be used directly in all the cases. Depending on the vision
of the future system on the cloud it may be necessary to reengineer partial or totally the legacy system
in a new cloud compatible system.

2.2 Migration Dimensions

Migration of application to the new cloud infrastructures can be understood in two different
dimensions; one more business oriented while the other more technology oriented.

The business orientation is focused on the migration of the system to support the cloud business
models; i.e. business models that take advantage of the internet capacities to deal with most of their
supporting activities. It usually involves additional functional requirements over the legacy system, and
few non-functional requirements.

The new market trends include globalization and service orientation as important drivers which are
changing the way business operates. Businesses are requesting flexible applications that can be
acquired seamlessly and independently of the location. This situation is progressively pushing
businesses from the on site system orientation to the service orientation. Accordingly, more and more
traditional software vendors are noticing the need to transform their current business and technology
model in order to remain in the market. Software as a Service (SaaS) has been set by these
companies as a mandatory way to keep their existing customers while at the same time seizing the
chance of acquiring new customers in unexplored markets.

The technology orientation is focused in the migration of the system so it is able to run in the new
cloud environment taking advantage of the new technologies without adding too much additional

1
 Infrastructure as a Service

2
 Platform as a Service

3
 Software as a Service

Software as a Product
basedCompany

Software as a Service
basedCompany

functionalities. It usually involves new non-functional requirements over the legacy system, and few
functional requirements.

Figure 2: Migration dimensions

The migration as shown in the Figure 2 could be summarised as the progress of an existing system in
the business and technology model dimension.

Typical features of evolution of the business model are:

¶ Customer billing: the calculation of invoices, management of invoices, different ways of
payments, management of accountancy errors, unpaid management, etc.

¶ Customer support: the management of incidences of customers including technical and non-
technical.

¶ Legal: the management of the customer and company rights.

¶ Financing: the financing need of the customer in case it is required.

¶ Ads (publicity): the management of the banner based publicity.

¶ Marketing: Marketing of the system.

¶ Federation: Federation with other complementary systems.

Example features of evolution of the technology model are:

¶ Billing: how to control the consumption of services by the different stakeholders.

¶ Security: Add the necessary security to ensure that only allowed customer access the system.
This security could be enhanced with other security properties such as non-repudiation.

¶ Maintainability: Changes to make the cloud system easier to maintain without affecting the
customer work.

¶ Interoperability with in house and other platforms: identify interoperability scenarios and
implement mechanisms to improve and ensure that interoperability.

¶ DB interfaces, location and replication.

¶ GUI (RIA, Mashups): Implementation of additional interfaces o new interfaces that allow the
access to the system functionality remotely. This could be client application, RIA, Mashups,
mobile applications, etc.

¶ User management: implementation of user management features, to register and control the
users and the user they make of the system.

¶ Performance: Activities to control the performance of the system and be able to adapt the
cloud infrastructure in line with the performance needs of the system.

¶ Availability: Features to control the availability of the system.

B
u

s
in

e
s
s
 m

o
d

e
l

Technology model

e-business

cloud
stand-alone

1

2

¶ Scalability: How the system can be resized to adapt to lower or bigger requirements of size
and performance.

¶ Configurability: The system should be configurable to the different needs of the customers. It
should also be able to record those configuration needs.

¶ Internationalization: Depending on the expected users, it could be necessary to implement
internationalization features on the system.

¶ Governance: Features to manage the different services provided by the system.

¶ SLA QoS: Control the provided quality, the committed quality, the quality expected from other
external services, etc.

¶ Updating mechanisms: mechanisms to include new features on the system, including the
possibility of managing different branches depending on the contract with the customers.

¶ Monitoring and logging: recording of the performance of the system in their different
components and key variables.

¶ Development environment: Implementation of testing (alfa, beta, etc.) versions of the system,
that allow to develop and test new features without affecting existing ones.

Figure 3: REMICS Migration scope

In REMICS we focus mainly in the evolution on the technology model (as shown in the Figure 3)
without adding too much extra features apart from those already available in the existing legacy
application. The covering of the business model migration will require a more in depth analysis of the
different e-business models, the features they include and the good practices to implement those
features. This is out from the scope of the project and is not required by the scenarios.

2.3 Migration and REMICS Challenges

Existing approaches and methods, presented in the deliverable D2.1, for transforming a legacy system
into a cloud compatible system still have some shortcomings. These shortcomings appear both on the
technical side and even in the business side. Shortcomings on the technical side in the way in which
they treat interoperability, reliability, QoS, SLA management, scalability, configurability or multi-
tenancy, basic issues in the migration of cloud applications. Shortcomings on the business side
usually in the way in which they treat the service provision, some additional maintenance features and
procedures may be required. The business side shortcomings may grow dramatically if the cloud
migration involves some kind of transformation of the migrated software into a SaaS.

A deficient management of these shortcomings may end up with high investments from the side of the
companies with little security that the product, offered in the context of the cloud, will be feasible for
their current customer spectrum.

Therefore, a new complete procedure model is needed, which helps enterprises improve their
technical know-how in order to migrate their software to cloud computing platforms. The high level

B
u
s
in

e
s
s
 m

o
d
e
l

Technology model

e-business

cloud
stand-alone

1 2

challenges identified during the definition of the problem scope of migration projects where grouped in
five categories as shown in the Figure 4.

Figure 4: Migration challenges

Organisational

¶ ROI and payback

¶ Not Every dayôs work

¶ Expertise not within organization

¶ Providers lock in

Requirements

¶ (Functional) Requirements origin from
the legacy

¶ New requirements come into play

Technological

¶ Lack of SOA support

¶ Lack of SaaS validation support

¶ Lack of support of SaaS ï compliant
requirements

¶ Lack of MD(r)E support

¶ Multiple GUI

Architectural

¶ System needs to be adjusted to be
SaaS Compliant

¶ Not ñone size fits allò

¶ Unpredictable performance

Procedures

¶ Different maintenance, deployment
and supporting procedures

¶ Demanding provisioning procedures

¶ Dependency management

¶ New withdrawal procedures

These challenges are described in lower detail in Appendix III.

All these challenges have been taken into account in the definition of the REMICS methodology
affecting their activities, work products, and life cycle. In Table 1we summarise the challenges and the
way in which they are addressed by the methodology.

Table 1: Challenge coverage in the methodology

Challenge Coverage

Organisational

¶ ROI and payback

Difficult to calculate the resources
needed and the ROI to achieve.

The methodology proposes techniques in the
early stage to analyse the best alternatives for
the migration of the different parts of the
system.

¶ Not every dayôs work

No repeatable effort.

The methodology does not stress elements that
are oriented for the support of repeatable
processes such as the identification of reusable
assets, or the gathering of lessons learnt to
improve the process.

¶ Expertise not within organization

Not well-known infrastructure and
technology.

The methodology proposes the application of an
iterative and incremental lifecycle that help to
better deal with problems derived from the lack
of experience in a given domain.

¶ Providers lock in

Vendor-lock in problem

The methodology promotes the implementation
of SOA that identifies explicitly the boundaries
of the systems and the interactions with external
services. This facilitates the replacement of
those services when necessary. This is done
mainly in the migration activities.

Requirements

¶ (Functional) Requirements origin from
the legacy

The requirements come from the
legacy.

There are recover activities supported by tools
that gather existing requirements from legacy.

¶ New requirements come into play

New features as additional
requirements.

The methodology encourages the explicit
identification of the additional features. This is
covered in the initial requirements related
activities.

Technological

¶ Lack of SOA support

Support for implementation of a service
oriented architecture.

The methodology promotes the definition of a
service oriented architecture as a part of the
migrate activity. This is addressed in the
migration activities.

¶ Lack of support of SaaS ï compliant
requirements

Support for SaaS at technology level.

The methodology supports the migration of a
system to a SaaS at technology level.

¶ Multiple GUI

Multiple interfaces may be required.

The service orientation facilitates largely the
development of interfaces in different devices
and technologies that access the features of the
system through those interfaces. This is done in
the migration activities.

¶ Lack of SaaS validation support

Multi-tenancy, monitoring, metering,
billing, security, SLA and QoS.

The methodology addresses these
characteristics in different phases of the
development. E.g. monitoring, metering and
billing will be mainly addressed by the
supervision activity area.

¶ Lack of MD(r)E support

Models as a way to deal with the
complexity

The methodology makes use of models as a
way to support the communication between the
different activities. It also makes use of models
transformations to abstract the legacy logic and
knowledge during the recovery phase. Latter it
make use of transformation to instantiate the
abstract knowledge in specific deployment
scenarios.

Architectural

¶ System needs to be adjusted to be
SaaS Compliant

Adjustment to the systems are
necessary

Covered by the whole methodology

In the migration activities changes are
introduced in the architecture of the application
in order to make it suitable for the cloud
environment.

¶ Not ñone size fits allò

Not all components are migrated in the
same way.

There is a preliminary analysis in the first stages
about the expected vision of the migrated
system.

¶ Unpredictable performance

Performance of the legacy application in
the new environment.

The supervision phase take cares of the
gathering of the information required for the
monitoring and control of the final system.

Procedures

¶ Different maintenance, deployment and
supporting procedures

New maintenance procedures are
needed

The supervision phase includes the
development of the necessary features to
support the maintenance of the final system
along the time.

¶ Demanding provisioning procedures

Software provided needs to be
managed and controlled in the provision
phase.

The methodology contains a supervision phase
to take care of the provision phase.

¶ New withdrawal procedures

Withdrawal procedures are needed

The withdrawal phase defines the activities to
be performed ant takes care of the development
of the necessary features on the system.

¶ Dependency management

Changes in the supporting cloud.

The methodology promotes the implementation
of a service oriented architecture that identifies
the interactions of the system with the cloud and
help the developers to deal with those when
modifying the cloud configuration. This is done
in the migration and supervision activities.

3 Overview of the REMICS Methodology

The overview of the methodology is composed by the terminology that is used along the definition of
the methodology; the main activity areas that are used to organise the methodology in smaller
packages; the lifecycle that is recommended for migration projects; and finally the principles that we
follow in the definition of the methodology. These elements are elaborated in the next subsections.

3.1 Terminology

Important terms in order to use the REMICS Methodology:

¶ Practice: A specialized type of guidance that describes a proven way of doing something or
common approaches and strategies that represent best practices. This is also used to
represent standards and policies related to methods.

¶ Delivery Process: A delivery process is a special process describing a complete and
integrated approach for performing a specific project type. It provides a complete end-to-end
lifecycle (for its scope) and can be used as a reference for running projects with similar
characteristics.

¶ Role: Describes a standard set of responsibilities and corresponding skills necessary to
perform a task or create a work product. A Role is not a job description the same person may
execute several roles simultaneously or during the course of a project and a role may likewise
be defined to represent a group such as a review board.

¶ Work Product: Used to define and describe the items needed as input or created as output of
one or more tasks that are the responsibility of a single role.

¶ Guidance: General term referring to all types of material that provide additional detail on other
types of elements.

¶ Task: Defines a unit of work that needs to be done in order to transform inputs into outputs
through a series of steps performed by one or more roles independent of a particular work
breakdown structure (WBS).

¶ Tool: A standard category used as a container for tool mentors. It can also provide general
descriptions of the tool and its general capabilities.

¶ Tool Mentor: A tool mentor is a type of guidance that explains how to apply a specific tool to
accomplish a task, perform a set of steps or instantiate a particular work product.

¶ Phase: A specialized type of activity that represents a significant period in a project normally
ending with a decision checkpoint, major milestones, or a set of deliverables. Phases typically
have well defined objectives and provide the basis for how the project work will be structured.

3.2 Methodology main activity areas

Figure 5: REMICS Methodology Activity Areas

The REMICS Migration Methodology currently implements the following activity areas:

¶ Requirements and Feasibility: The purpose of the requirements activity area is to gather the
migration requirements for the system, and to identify the main components of the solution
and their implementation strategy. The purpose is not an exhaustive description of all
requirements of the objective system, but the description of the requirements that will require
development effort and will be used as a basis for the validation of the system. In this initial
requirement elicitation process it is also not necessary to focus on those requirements that will
come up from the systematic analysis of the legacy. This affects mainly the requirements of
components that are going to be reengineered. Requirements that will appear during the
recover activities through the application of migration tools.

¶ Recover: The purpose of this activity area is recover the knowledge from those legacy
components that in the feasibility analysis has been pointed as candidates to be reengineered.
The application of recover methods and tools will provide the application model of the legacy
application. Moreover, the application of recover methods and tools may provide information
on the requirements and even in the testing procedures for the migrated code.

¶ Migrate: The purpose of this activity is to define and implement the new system based on the
elements identified during the requirement and recover phases. This will include also the
definition of the necessary new components to fulfil the past features and the additional
requirements and developing a service oriented architecture

As stated above, one of the basic requirements of a well-designed SaaS application is the
existence of monitoring, security and billing components (in case of new business model).
These components need to be fully integrated in the resulting application and the methodology
must give companies indications on when and why these components must be used.

These components are generic and independent from the application provided but at the same
time they are tightly linked to the software migrated. The separation of the supporting
functionalities into different elements will provide a set of re-usable components for each
application to be migrated, avoiding the necessity of having to develop these components from

Recover Migrate Validate
Control &
Supervise

Req&
Feasibility

Withdrawal

Interoperability

scratch for each new migrated product. Following, an overview of the components and the
functionalities required for each one is provided:

o Billing Component: Support for variable prizing plans and for automatic billing,
purchase/clients order management and support for credit card payments.

o Monitoring Component: Management of different monitoring parameters, SLA shaping
and monitoring, and alert generation.

o Security Component: Security for Multi-tenant environments, Information security
management, and support of different security levels (technical, legal and business
levels).

o Intercloud API: Transparent support for different clouds providers.

¶ Validation: The purpose of this activity area is to define testing strategy to verify that the
migrated system implements the requirements identified and verify that the components
(including those not reengineered) and services work properly.

This validation phase includes not only functional validation but what it is more important, non-
functional validation, especially performance, reliability and security. In the case of cloud
computing applications these three aspects must be stressed on.

¶ Supervise: The purpose of this activity is to provide elements to control the performance of
the system and to modify that performance.

The last step, control and supervision, allows a company to monitor at all times, the
performance of the application once this has been released and provisioned as a service, so it
can be improved in performance, reliability, resources used and beware of possible
degradation

¶ Interoperability: The purpose of this activity is to provide tools that solve interoperability
problems with 3

rd
 part providers or any external components and services. This may include

the development of new components.

Interoperability is a crosscutting activity to the general methodology that deals with the
interoperability issues that affect SaaS along the other activity areas (requirements, recover,
migrate, validate, supervise, and withdrawal).

¶ Withdrawal: The purpose of this activity is to provide elements to stop the service, with the
purpose of finalizing it or with the purpose of moving to another cloud infrastructure.

3.3 Lifecycle

The REMICS project is specially focused in the recover, migrate, validate and supervise activity areas,
and for those areas it will provide specific tools and techniques. The other two activity areas
requirements and withdrawal are included in the methodology in other to fully cover the lifecycle of the
cloud based applications. These two activities in principle will not receive special support.

After the extension of the REMICS project in 2011, with the incorporation of new partners with new
capabilities the scope was extended to cover also the requirements activity area. Therefore, since
2011 the requirement activity area will also be provided with tools and techniques from the REMICS
project.

Figure 6: REMICS Methodology Scope since 2011

The REMICS will be based on an iterative lifecycle with a similar philosophy of OpenUP [17].
Depending on the phase of the project the methodology will provide different kind of iterations where
the first ones will be focused in the requirement identification and the last ones in the evaluation and

Recover Migrate Validate
Control &

Supervise

Req &

Feasibility
Withdrawal

Interoperability

supervision of the final system. The Figure 7shows the six types of phases expected in REMICS
methodology: Requirement, Recover, Migrate, Test, Supervise and Withdrawal.

Figure 7: REMICS Methodology Lifecycle Phases

Internally, each phase may implement all the activity areas of the methodology but with different
priorities.

¶ Requirements phase: the focus in this first phase is the identification of the final system
vision, the identification of the additional requirements, and establishment of the development
(development, testing, preproduction, production) environment. It may also include the
implementation of few critical features of the system, which may compromise the final system
vision.

¶ Recover phase: the focus of this phase is the recovery of the knowledge of the components
to be reengineered. This may include the implementation of features of the recovered system
in the new infrastructure.

¶ Migrate phase: the focus is the delivery of all the features of the initial system plus the
implementation of the additional system.

¶ Validate phase: the focus is to develop validation procedures to ensure that the developed
components fulfil the application requirements.

¶ Supervise phase: the focus is to implement the supervise procedures and components. This
may involve the introduction of additional requirements, components and validation
procedures.

¶ Withdrawal phase: the focus is to implement the withdrawal procedures and components.
This may involve the introduction of additional requirements, components and validation
procedures. Withdrawal phase has a different colour as far as it will not be supported by the
REMICS project

For the implementation of each of the phases the REMICS methodology proposes a SCRUM or XP
like approach where some features are chosen for implementation. In each of the Phases it will be
possible to carry out one or more sprints. A sprint is an SCRUM concept that represents a closed
period of time, usually two weeks, where some features of the final system are chosen to be
implemented and are finalized. Anyway, this duration can be adjusted to the context of each migration
project.

Figure 8: REMICS Methodology Lifecycle Sprints

Phase 2 Phase 3 Phase 4 Phase 5Phase 1 Phase 6

F
o
c
u
s

Requirements

F
o

c
u

s

Recover

F
o

c
u

s

Migrate

F
o
c
u
s

Test

F
o

c
u

s

Supervise

F
o
c
u
s

Withdrawal

Recover

Phase

Migrate

Phase

Validate

Phase

Supervise

Phase

Requirement

Phase

Withdrawal

Phase

Requirement

Sprint 1

Requirement

Sprint né

3.4 Principles

Taking into account the scope of the methodology and the challenges to be addressed during the
implementation migration projects a set of methodological principles to guide the development of the
methodology were selected. Some of the principles make reference to the overall methodology while
others make reference to specific assets or activities. These principles have been taken into account
during the development of the methodology and should be taken into account during the migration
projects.

First we list the principles respect to the overall methodology

¶ Migration Oriented

¶ Interoperability Oriented

¶ Recovery Oriented

¶ Testability

¶ Supported by help

¶ Standard based Definition of the
Methodology

¶ Iterative and Incremental Approaches

¶ No Methodological Framework, ready
to use methodology

¶ Deployment and Exploitation Oriented

¶ Documented Design

Next we list the principles respect to specific assets or activities

¶ With Respect to the Modelling

o Model Driven Development

o UML Standardised Notation

o Standardised Notation
Extensions for Models

¶ With Respect to the Architecture

o Service-Orientation

o Architecture Centric

o Component Based

o Integration Oriented

o Standard Based Integration

¶ With Respect to the deployment

o Cloud Oriented

o Availability

o Predictability

o Security

o Observable

o Longevity

¶ Other secondary principles

o Traceability

o Concurrent Engineering

o Market Orientation.

o Web Service Based

o Business Logic First

These principles are described in more detail in Appendix IV.

4 Overview of Methodology Tool Support

The REMICS project aims to provide to the organisations willing to migrate from a legacy infrastructure
to a cloud infrastructure not only a set of steps and phases but also a set of tools that make it easier to
execute the phases helping them to increase the success rate in this effort. The project focuses in
tools that leverage the technical advances achieved during the last years in different domains such as
architectural, modelling or testing. The project focuses in the provision of support in the following
areas:

¶ Requirement management

¶ Knowledge recovery from legacy

¶ Migration to SOA based cloud architectures

¶ Model based testing

¶ System evolution

The project has established a roadmap for the tools to be provided from their partners. These tools will
support different phases of the project as shown in Figure 9.

Figure 9: REMICS process workflows and tools

The different work packages of the project provide components that can be useful during the
development or even during the runtime/exploitation phase of the resulting system. Therefore and in
order to gather as much features of the project the REMICS IDE architecture has been split in two
main parts design time and runtime best practices. The design time support contains all the
components used for the development of the system. This includes tools to gather the requirements,
tools to recover the knowledge from the legacy code, tools to redesign the system for the cloud
environments or tools for testing. The runtime best practices includes components or design patterns
that are expected to be part of the running system. This includes components such as the ones
dealing with interoperability issues or the ones enabling the models at runtime support.

¶ Trac: This is a ticket management tool that has been customised to support the requirement
management in REMICS.

¶ BluAge: This is a recovery tool that is able to extract the knowledge models from different
languages.

¶ Modelio: This is modelling tool with migration and recovery capabilities. It is able to support
many activities during de migration phase such as the component identification, the service
architecture modelling, the cloud deployment modelling and the PSM model and code
generation. In the recovery side it is able to support the recovery of java code.

¶ TALE: It is a requirement recovery tool that can be used to gather an existing tool
requirements through its regular use. . TALE transforms the captured usage of the interfaces
into RSL models.

Trac

Recover Migrate Validate
Control &

Supervise

Req &

Feasibility

BluAge

Modelio

TALE D2CM

Modelio

RedSeeds

Metrino

Fokus!MBT

Models@

Runtime

Interoperability

Framework

CloudPerform

anceMonitorin

gTool

RSLTesting

Tool

BluAge

¶ D2CM: It is a tool to deploy systems in different cloud configurations in a semiautomatic way.
It can be also used for performance analysis of different configurations.

¶ RedSeeds RedSeeds transforms this RSL models into UML models to be used by Modelio to
complete the component and deployment architecture.

¶ Metrino It is a tool to measure different characteristics in the models of the system. It is a
static analysis workbench for MOF models.

¶ Fokus!MBT is a model based testing workbench.

¶ RSL Testing tool is a tool also a model based testing tool.

¶ Models@Runtime: it is a set of libraries that allow to interact with models at runtime

¶ Interoperability Framework: it is a set of libraries to deal with interoperability issues

¶ CloudPerformanceMonitoring tool: It is a tool to evaluate the performance of a cloud
deployment.

Figure 10 provides information about the information used as input and the information provided as an
output by the different tools. For example BluAge in the Recover phase will take code as input (Cobol,
PL/SQL, etc.) and will provide UML models as outputs. The UML models provided by Modelio can be
latterly used by any component in the migration phase that is able to receive UML as input.

Figure 10: REMICS process workflows and tools inputs and outputs

This creates the possibility of using the set of components in many different ways in order to support
multiple situations. In the project not all the scenarios make use of all the tools. The scenarios carried
out in the REMICS project make use of different set of tools depending on their context and objectives.

In the release of the handbook we focus in the toolkits developed on the month 24 of the project.

Trac

Recover Migrate

Validate Control & Supervise

Req &

Feasibility

BluAge

Modelio

TALE D2CM

Modelio

RedSeeds

Metrino

Fokus!MBT

Models@

Runtime

Interoperability

Framework

CloudPerformance

MonitoringTool

ÅReports
ÅUML

ÅUML

ÅCode (cobol,

plsql,é)

ÅCode (Java)

ÅXML from GUI

ripping tool
ÅRSL

ÅRSL

BluAgeÅUML
ÅJ2EE,J2ME,

spring,.neté

ÅCloud

Deployment

ÅCloud

Deployment

ÅUML/SoaML

ÅUML/

SoaML

ÅUML

ÅUML

ÅUTP

ÅUML

ÅSMM

ÅReports

ÅUML

ÅUTP

ÅReports

ÅUML Åjava

ÅMediationServices/JavaÅEcore

ÅXSD

ÅDesktop

app

Åreports

RSLTesting

Tool
ÅRSL ÅReports

5 User Guide for the REMICS Methodology Wiki

This user guide focuses on the REMICS Methodology Wiki (http://remics.modelbased.net) and how to
use and navigate the website. The Wiki can be used by two different types of users:

¶ Method engineers: Method engineers assist practitioners in configuring and tailoring their
specific methods. As such they need detailed knowledge about how to author and compose
practices in EPF Composer and install and configure EPF Wiki in order to publish practices
and methods.

¶ Practitioners (i.e. scrum master and migration team): Practitioners consumes (i.e. reads and
follows guidelines) practices and methods that have been published in the EPF Wiki. If they
want to modify guidelines and post comments, they only need to be exposed to a minimum of
the EPF Wiki functionality. They do not need to be exposed at all to the EPF Composer.

Figure 11 illustrates the user types of the REMICS Methodology Wiki.

Figure 11: Users of the REMICS Methodology Wiki

This section is written primarily for the (team of) practitioners that are consuming the published
practices on the Wiki. The guide covers the following topics which are elaborated in the following
subsections:

¶ How to navigate the REMICS Methodology Wiki

¶ How to read a practice

¶ How to read a delivery process

The usage of the EPF Composer tool, which is only used by method engineers, is explained in
Deliverable D2.7 which covers the design and implementation of the REMICS Methodology.

5.1 How to navigate the REMICS Methodology Wiki

The REMICS Methodology has been implemented using the EPF Composer tool and the online
content on the Wiki is a result of using the publishing feature of the EPF Composer tool. The Wiki
content is divided into two main panes, a tree structure navigation on the left side (see Figure 12) and
a main content page on the right side.

http://remics.modelbased.net/

Figure 12: REMICS Methodology Wiki ï Navigation tree

The Wiki starts with a ñWelcome pageò (see Figure 13) that contains a short section about the
methodology problem domain and the methodology main activity areas.

Figure 13: REMICS Methodology Wiki ï Welcome page

The methodology can be navigated in different ways, using the tree structure: Getting started, Delivery
processes, Practices, Role, Work products, Guidance and tools. The different navigation ways of the
methodology intersects and allows for different ways of reaching the same element.

5.1.1 Getting started

The ñGetting started pageò (see Figure 14) provides additional information for using the REMICS
methodology and is recommended as a starting point for those unfamiliar with the website.

Figure 14: REMICS Methodology Wiki ï Getting started

5.1.2 Delivery processes

A delivery process is a special process describing a complete and integrated approach for performing
a specific project type. It provides a complete end-to-end lifecycle (for its scope) and can be used as a
reference for running projects with similar characteristics.

The ñDelivery processes pageò contains the default recommended work breakdown structure
ñREMICS delivery processò (see Figure 15) describing the sequence of the main activities of the
REMICS methodology.

Figure 15: REMICS Methodology Wiki ï REMICS delivery process

5.1.3 Practices

The ñPractices pageò contains a list of the practices configured as part of the methodology. Each
practice contains a main page that lists the referenced contents (as illustrated in Figure 16 for the
ñRequirement" practice).

Figure 16: REMICS Methodology Wiki ï Requirement

5.1.4 Role

The ñRole pageò lists the different roles. Each role contains links to the tasks that it performs (as
illustrated in Figure 17 for the ñMigration Teamò role).

Figure 17: REMICS Methodology Wiki ï Migration Team

5.1.5 Work products

The ñWork products pageò lists the different work products in the REMICS methodology. Each work
product contains relationships to other roles and tasks, a main description, links to work product parts,
and links to different types of guidance such as examples and guidelines (as illustrated in Figure 18 for
the ñComplete System Requirementsò deliverable).

Figure 18: REMICS Methodology Wiki ï Complete System Requirements

5.1.6 Tools

The ñTools pageò lists the different tools applicable to the practices previously described (as illustrated
in Figure 19).

Figure 19: REMICS Methodology Wiki ï tools

5.1.7 Tools mentors

For each tool guidelines on the usage of the tool in REMICS methodology is provided (as illustrated in
Figure 20).

Figure 20: REMICS Methodology Wiki ïtool mentors for Modelio

5.2 How to read a task

Inside the practices we finally find the tasks which are the work units of the REMICS methodology.
Each of these tasks provides us a description, the expected role and the inputs and outputs (as
illustrated in tool in REMICS methodology is provided (as illustrated in Figure 21).

Figure 21: REMICS Methodology Wiki ïtasks for requirements

Then each task is described with a textual description, together with the expected actors, the inputs
and the outputs. In some cases the task will be also accompanied with the tool mentors of the tools
related with it (as illustrated in Figure 22).

Figure 22: REMICS Methodology Wiki ï Definition of Cloud Architecture

5.3 How to read a tool mentors

For this version of the REMICS methodology we have integrated the tool mentors with a list of the
related tasks and the description of the tool usage for those tasks (as illustrated in Figure 23).

Figure 23: REMICS Methodology Wiki ï Definition of Cloud Architecture

5.4 How to read a delivery process

The delivery process (see Figure 15) is presented as a clickable activity diagram. In order to find the
proposed task sequence for the different phases we have to navigate through the phases and the
iterations until the capability process (as illustrated in Figure 24).

Figure 24: REMICS Methodology Wiki ï Requirements

6 Conclusion

The migration of legacy applications to cloud environment constitutes a new business need for
software organisation in order to provide a better service to their customers. The usage of the cloud
infrastructures may provide many benefits to the organisation, for example when scaling the system.
Besides this, the migration to a new operational infrastructure is always a good opportunity for the
organisations to update their legacy components to new trends in software development.

Within the REMICS project new techniques and tools are introduced to allow organisations to better
deal with some of the challenges (Chapter 2) that these kind of project have to deal with.
Unfortunately, there is no current methodology that covers the migration projects where almost all the
features and the business logic to be implemented in the new system are encoded in the legacy
application.

The current document presents a handbook to support organisations in the migration of their legacy
systems to the cloud. The handbook is characterised by a set of activity areas to be usually needed
for this kind of initiatives, a recommended lifecycle that helps organisations to manage with the lack of
knowledge about the existing systems, and a set of guidelines to support the usage of the
recommended tools.

The methodology described in this handbook covers seven activity areas:

¶ Requirements: focused on the additional requirements.

¶ Recover: focused on the recovery of the application logic from the legacy code.

¶ Migrate: focused on the definition and implementation of the migrated system, usually include
the implementation of the SOA.

¶ Validate: focused on the implementation of validation activities over the migrated system.

¶ Supervision: focused on the implementation of monitoring and support features.

¶ Interoperability: focused on the identification of interoperability issues and their solution.

¶ Withdrawal: focused on the stop of the service in a managed way.

The lifecycle described in this handbook provides an iterative and incremental approach. It is
organised in six main phases that may be split in one or more sprint in order to provide features in a
periodic basis trying to avoid deadlock situations.

¶ Requirements phase: focused on the definition of the system and the identification of the
additional requirements.

¶ Recover phase: focused on the recovery of the application logic of the components selected
for reengineering.

¶ Migrate phase: focused on implementation of the migrated system.

¶ Validate phase: focused on the validation of the additional requirements and the main features
of the system.

¶ Supervision phase: focused on development of features to support the maintenance of the
service.

¶ Withdrawal phase: focused on development of features to stop the provision of the service.

The guidelines described in this handbook on the usage of the different tools developed in the project
to support the migration of applications have been introduced in this first interim version. It includes
support in the usage of the first set of tools of the project. This includes.

¶ BlueAge

¶ Fokus!MBT

¶ Mediation Framework

¶ Metrino

¶ Modelio

¶ Models@Runtime

¶ RedSeeds

¶ Remics Installer

¶ TALE

¶ Trac

7 References

1. REMICS consortium, ñD2.1 ï State of the art on modernization methodologies, methods and
toolsò, REMICS project, 2011

2. REMICS consortium, ñD2.2 ï Methodologyò, REMICS project, 2011

3. REMICS consortium, ñD6.1 - Verification, Testing and Models@Runtime Toolkit, Preliminary
Releaseò, REMICS project, 2011

4. REMICS consortium, ñD3.2 - REMICS Recover Toolkit, Preliminary Release (M12)ò, REMICS
project, 2011

5. REMICS consortium, ñD4.2 - REMICS Migrate Toolkit, Preliminary Release (M12)ò, REMICS
project, 2011

6. A. Wasserman: Tool integration in software engineering environments, Proc. of the Int. workshop
on SWEE, Springer, USA, 1989.

7. Sandmann G., Thompson R. Development of AUTOSAR Software Components within Model-
Based Design. 2008 World Congress, Detroit, Michigan, April 14ï17, 2008 - SAE Paper 2008-01-
0383

8. Shaver, Dave. "The HL7 Evolution - Comparing HL7 Versions 2 and 3". Corepoint Health.
http://www.corepointhealth.com/sites/default/files/whitepapers/hl7-v2-v3-evolution.pdf. Retrieved
16 February 2012.

9. IEEE Std 1175.1-2002. IEEE Guide for CASE Tool Interconnections - Classification and
Description.

10. OMG/RFP/QVT: MOF 2.0 Query/Views/Transformations RFP. OMG document ad/2002-04-10.
http://www.omg.org

11. OMG/XMI: XML Model Interchange (XMI) OMG Document AD/98-10-05, October 1998.
http://www.omg.org

12. OMG. Unified Modeling Language, 2011. http://www.omg.org/spec/UML/2.4.

13. The Model Ware Project: Model Ware - MODELling solution for softWARE systems,
http://www.modelware-ist.org/

14. The MODELPLEX Project: MODELPLEX - Modeling Solution for Complex Systems,
http://www.modelplex-ist.org/

15. REMICS at a glance: from legacy applications to services in the Cloud, white paper, July 2012

16. Kreger, H., Harold, W. and Williamson, L. Java and JMX, Building Manageable Systems,
Addison Wesley, 2003

17. http://epf.eclipse.org/wikis/openup/

Appendix I. Methodology Practice Example

This appendix provides an example of one of the seven practices of the REMICS methodology the full
content can be found on the website.

I.1. Requirements

I.2. Purpose

The purpose of the requirements activity area is to gather the additional requirements for the migrated
system, and to identify the main components of the solution and their implementation strategy. The
purpose is not an exhaustive description of all requirements of the objective system, but the
description of the requirements that will require development effort and will be used as a basis for the
validation of the system. In this initial requirement elicitation process it is also not necessary to focus
on those requirements that will come up from the systematic analysis of the legacy system. This
affects mainly the requirements of components that are going to be reengineered and requirements
that will appear during the recover activities through the application of recovery tools.

The following picture presents a high level view of the inputs and outputs for this activity area.

Figure 25: REMICS Requirements Activity Area Overview

For this practice the handbook proposes a sequence of contained tasks. This sequence is illustrated in
the following Figure 26.

Req &

Feasibility
Å System Idea Å System Description

Å Main components and

implementation

strategy

Å Component spec for

those not to be

recovered

Å Additional Requirements

Å Actors

Å Requirement

Å Validation criteria

Å Glossary

Figure 26: REMICS Requirements Activity Area Overview

Next the tasks for this activity area are described

I.2.1 Apply Techniques to Evaluate Feasibility

In a migrated system not all the parts are equally reusable; in fact there are many different ways to
reuse components. In some cases the best way to reuse a component may be to wrap it, in other
cases to reengineer, in other cases to replace with an external one, and in other cases to implement
from scratch, etc. The SMART method provides a methodology to evaluate the feasibility of the
different approaches, providing valuable information for this decision making process.

Roles:

 Requirement Team
Inputs

Ý System Idea

Ý System Overview
Outputs

Û System Overview

I.2.2 Remaining tasks

The remaining task for this practice:

¶ Define General Deployment Model

¶ Describe the System

¶ Elaborate Glossary

¶ Establish Validation Criteria

¶ Identify Actors

¶ Identify Additional Requirements

¶ Prepare and Demo Product Backlog

¶ Requirements ScrumDemo and Retrospective

¶ Sprint Planning

are not described here, they can be browsed in the website.

Appendix II. EPF Development Approach and Steps for
Agile Extension

II.1. New terminology adaptation

¶ We rename activities to tasks

II.2. Redefine the activity diagrams

Before going into de description of the activities we are going to define the sequence for the activities
in the different phases. For simplicity in this stage we are not going to use activities to group tasks, as
shown in the following example.

Figure 27: Activity usage for organising tasks

To access the activity diagram we create a capability patter for the requirement phase and inside we
choose to open the activity diagram as shown below.

Figure 28: Opening an activity diagram

